
“We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:
Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan
That is, while there is value in the items on
the right, we value the items on the left more.”
~ The Agile Manifesto

12 Principles Behind the Agile Manifesto

Aside from the base manifesto (above), the Agile philosophy also includes 12
principles that flesh out the core concepts. Each of the 12 principles are
interconnected, they flow naturally into one another and cross-pollinate. They
create a mesh of ideas that rely on the foundations of being open, creative, and
empathetic. Agile is an accommodating guide, an ethos that understands the
value of the individual in relation to the strength of the team. Agile extends a
sense of adventure and iterative non-attachment. Agile is an invitation to a
non-dualistic approach to development, an opportunity to advance a culture of 1

sharing and prosperity founded upon the ability to grow, learn, and be flexible
in the face of inevitable challenges and a rapidly changing world.

The 12 principles are as follows:

1. Our highest priority is to satisfy the customer through early and

continuous delivery of valuable software.
2. Welcome changing requirements, even late in development. Agile

processes harness change for the customer’s competitive advantage.
3. Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale.
4. Business people and developers must work together daily throughout the

project.
5. Build projects around motivated individuals. Give them the environment

and support they need, and trust them to get the job done.
6. The most efficient and effective method of conveying information to and

within a development team is face-to-face conversation.
7. Working software is the primary measure of progress.

1 No more “us and them” mentality.

8. Agile processes promote sustainable development. The sponsors,
developers, and users should be able to maintain a constant pace
indefinitely.

9. Continuous attention to technical excellence and good design enhances
agility.

10. Simplicity–the art of maximizing the amount of work not done–is
essential.

11. The best architectures, requirements, and designs emerge from
self-organizing teams.

12. At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behavior accordingly.

Commentary

A few notes of extrapolation have been provided below to demonstrate some of
the ways these principles may be applied practically.

Involve the customer
It is better to include the customer early than to assume you know what they
need. This not only provides valuable insight and context for the design and
development team, but also involves your customer in a way that promotes
their personal investment and loyalty; allowing them to feel valued, heard, and
understood. To be understood is such a basic human need, and to include your
customer in the design process is an incredibly powerful way to both humanise
and promote the company.

Be flexible
Situations change, people change, and software needs to be able to evolve and
change too. A good piece of software exists to solve a problem, and it is natural
that over any given amount of time new problems arise, while others evolve.
Without problems that need solving, there is no need for a solution to exist -
therefore, the development process must be as fluid, as Agile, as life demands.
It needs to be able to flow with, respond to, and hopefully (via correct iteration)
forecast the kinds of challenges a customer or sector is likely to experience.

Deliver frequently
Releasing software frequently is advantageous, and encourages;

a) The development team to try new features.
b) The ability to gain feedback on features more quickly.
c) The opportunity to engage the customer throughout development.
d) The ability to iterate and grow organically with feedback.

As a product grows, the creative / experimental elements and the need of the
customer naturally become homogenised via the process of release, insight,

and iteration. It is important to continue to deliver features frequently. This
allows both for the ability to “fail fast” - to adapt in real time as a product is
built and delivered , and to successfully remain Agile enough to iterate 2

solutions based upon customer feedback. If the working software hasn’t been
shipped, it’s not finished and so no progress has been made. Unreleased
software is inventory. And inventory is a cost, not a piece of income or value.

Communicate often and in the open
Each extra step in communication leads to lost information, therefore it is not
only useful to involve all relevant parties in conversation, but to enable teams
to communicate frequently and fluidly. This allows staff to feel included in
stakeholder level decisions, draw new context and meaning, and take
ownership over their product while understanding the impact their work has.

Empower your team
With the correct coaching, environment, and tools, developers will feel
motivated and enjoy a sense of investment that will add a dimension of
meaning to their work. If projects are built around people that aren’t motivated
or have been demotivated due to a lack of trust or support, that project isn’t
likely to succeed. Even worse, developers may leave - taking important
historical learning and context with them - which will destabilise the team
foundations and the stability of the product.

Maximise the amount of work not done
Promote simplicity, minimise complexity. A complex developmental process
will likely generate complex software. Remove procedures that are no longer
relevant, automate manual work, use existing libraries instead of writing your
own, et cetera. It not only saves time and money, but frees up valuable
development resources to work on new features.

Promote technical excellence
Allowing a team to “fail fast” allows them to grow and incubate technical
experiences via rapid proliferation of innovations and ideas. If teams neglect a
good technical design for too long, their speed and time-to-market will suffer
as they become bogged down in refactoring. As a result, their ability to grow
the product as a reaction to a changing market will diminish and agility will be
lost.

Learn and adapt
Utilise both a daily stand-up, and release meetings to discuss what is working,
and what isn’t. Brainstorm together as a team, and constantly reassess
processes to come up with new ways of working together as the team moves
forward. It is important to encourage seeing setbacks as opportunities to grow
and advance.

2 It is also possible to A/B test features in this way, collect the feedback, then deploy the most suitable
feature.

Glueing it all together: a deeper look at empathy and iteration.

Agile, and its 12 principles are as simple or as complex as needed. Like the
development processes they promote, the concepts are self-iterative, and can
be fed back into themselves to define more complex use cases.

There are two fundamental concepts that lie at the heart of an Agile design
process. These are empathy (which when properly distilled becomes insight),
and iteration . 3

Empathy

Empathy can be summarised in a creative context as the meaning and insight
gained via the sympathetic distillation of data between nodes; a flow of
communication rooted in understanding and reciprocation.

Empathy, used correctly, creates a bridge between two or more previously 4

isolated nodes. For example; customer and company, problem and solution,
designer and developer, team and product, et cetera . 5

This empathetic connection between nodes allows a sphere of influence to
grow which includes all parties in an orientation that fosters meaning, direction,
and a shared focus. Empathy is about listening, understanding, and venturing
above all else to create the conditions from which genuine insight can be
rendered. Genuine insight plants the foundations for authentic mutual
relationships which in turn create strong and resilient structures of
community, sharing, learning, and growth. Empathetic insight is also the
foundation from which you are able to reasonably predict the direction of your
product, see setbacks as growth opportunities, and distill valuable truths about
your processes without bias or blindspots.

Agile disowns the “us and them” mentality that inhibits growth. Agile is an
invitation to put aside the singular and create a community around a product
that engenders all involved with a sense of ownership. From business
stakeholders to designers, developers, and the customer - all are initiated into
an empathetic process that allows ideas to be collected, prioritised, and enacted
upon based upon the needs of the customer in a cycle of frequent iteration.

3 Iteration is the ability to act upon insight, to take what is known and feed it back into the creative
process indefinitely.
4 This can also be imagined as an entanglement or threading together of two differently traveling
paths, this creates a harmony or resonance - “striking a chord”.
5 Naturally, empathetic connection between nodes aren’t limited to pairings, but can extend to an
endless network of inter-connections.

Iteration

Through the process of iteration, complex systems and designs can emerge
that transcend even the original concept, becoming what they are needed to
become in a given environment, morphing and growing with the customer,
consistently adding value over time. Agile, underscored by empathetic insight
and iteration takes low-resolution ideas, and progresses them naturally
towards high-resolution realities.

Empathy > Insight > Iteration > :

Agile iteration provides a preferable outcome over older “a > b” release
patterns. In such a waterfall release model, a product is shipped when it is
finished, likely prohibiting adaptability and denying software the ability to
evolve and grow. Worse still, a product may no longer meet the requirements of
the customer by the time it is shipped, leading to a possible breakdown in
communication, and a corruption in the relationship the customer has with the
product. 6

Modern systems are designed and built continuously, dynamically, and are
shipped frequently, directed by customer need. In this way, there is a distinct
and profound correlation between Agile processes, component-based
development frameworks, and empathetic development and learning. The
Agile system is a direct reflection of the people that utilise it. The same process
of customer interaction, sharing, and learning are reflected in the technology
itself - via shared libraries, components, and open source culture. This is true
too of the way data is shared at large, or how people communicate via social
networks. You can extrapolate the iterative concept as far as you wish; what is
true at the macroscopic level reflects itself into the microscopic - from systems
and software, to individuals and people using that software. To understand this
is to understand why the Agile framework, and the systems that spring from it,
are so successful.

To simplify, people aren’t business processes, they aren’t unidimensional and
don’t exist in a neat line that traverses in an “a > b” manner like the waterfall
approach of old. Software should reflect the user as to become virtually
invisible. People are diverse, changeable, complex, empathetic beings - so it
makes sense that the systems they interact with should reflect these qualities.

6 This can also lead to losing a customer entirely.

